

LV Switchgear Assemblies

How to increase the safety of LV switchgear assemblies - "Avoid serious injuries of persons and blackouts of power"

Lutz Graumann November 2016

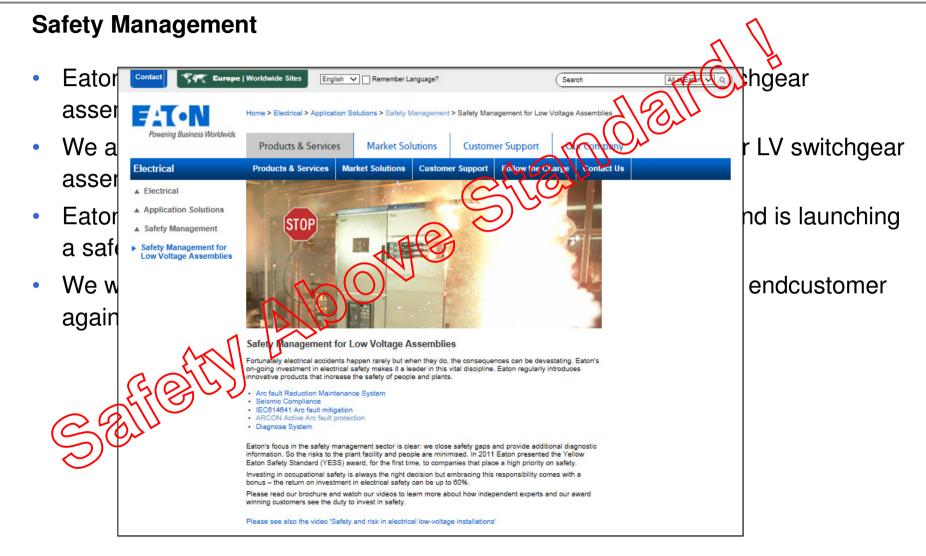
Your conversation partner today

- Lutz Graumann
 - Eaton Industries Germany
 - Business Development Manager EMEA
 - Safety Specialist personal and assembly protection @LV switchgear assemblies
 - Consulting IEC 61439, TR61641
 - 25 years engineer with "passion" and expertise in LV switchgear assemblies upto 6300A, busways, electronic arc flash protection, long term stays in US, Poland, Lower Gulf

Content

- Why is safety important?
- Causes & Types of faults
- Risk Mitigation
- Eaton's view of switchboard safety
 - Verification by test to the standard
 - Passive safety measures
 - Active safety measures
- Discussion

Why do we meet today?


The protection of personnel and systems is increasingly important

- Injury and or death of individuals
- Cost of lost production
- Continuation of supply
 - Continuous processes
 - Life saving power requirements
 - Secure power supplies
- Cost or repair
- Safety First culture

Incident from the media

Fault causes and consequences

- Event caused by
 - Technical defect
 - External influences "non-human"
 - Human error
- Consequences
 - Seriously injured people or even death
 - Damage to the assembly, buildings or parts of buildings
 - " Black-out" inactivity of process inability to supply

Faults in a LV switchgear assembly are not 100% predictable or can be completely eliminated

Some of the more common faults are caused by:

- Arc faults, phase to phase, phase to ground, low level arcing faults
- Malfunction within the switchgear assembly, e.g. main busbar / connections, etc.
- Direct short circuits
 - Phase to phase are less common
 - Phase to earth more common
- Hot-Spots, overheating, fire
- Contact with live parts
- Overloading

Influences on the safety and operation of switchboard

- Design / latest standard
- Work instructions
- Staff knowledge
- PPE
- Monitoring of the system
- Accessibility
- Maintenance
- •

Measures, to...

- reduce the possibility of a case of damage
- limit the extent of the damage effect

Need for...

- higher standards
- solutions above standards

Standards / solutions above standard...

Standards / solutions above standard...

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic tested assembly
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breaker
 - Active electronic arc fault protection system

LV switchgear assembly according to IEC / EN 61439

Minimum requirement of safety for people and systems by assembly according to *IEC / EN 61439*

Basics about IEC / EN 61439

- Assemblies according to IEC / EN 61439 part 2 not to use by ordinary persons – usually I_{nA}>250A
- Responsibility and documentation are now more clearly regulated "original manufacturer" - panel builder
- Documentation is required in detail for all systems design verification and routine test
- Design verification by testing, deriving or assessments/calculation
- Evidence of temperature rise for assembly I_{nA} >1600A through testing
- Exchange of a tested devices by non tested brands 'almost' impossible (if necessary test and design verification again required)

Typical design of an assembly ...

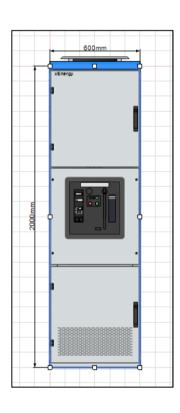
Selection ...

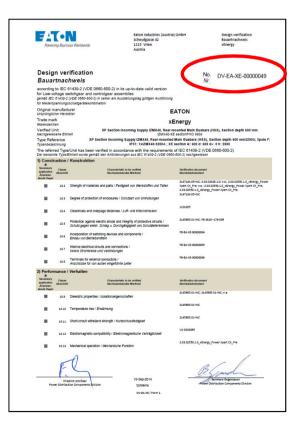
Section: high current circuit breaker

- Air circuit or molded case circuit breakers
- Fixed or withdrawable
- Form 2-4
- Typical for incomer or feeder >= 630A

Typical design of an assembly

Selection ...


Section: feeder/motor starter


- Motor starter / feeder in fully withdrawable technology
- Form 2-4
- Typical for motor starters up to 250kW and feeder up to 630A
- Ideal for rapid exchange

Proof of conformity by design verification

Ensuring clear labelling and traceability of evidence

Design verification:

- all documents as package per field or project
- Latest documents

Switchgear assembly according to IEC / EN 61439

F.e: Eaton xEnergy

Characterisics:

- U_n up to 690V 50Hz
- I_{nA} up to 6300A rear/top busbar design
- Fixed installation, plug-in, fully withdrawable technology
- IP 30/31/42/55
- Form 1 4
- Design verification according to IEC 61439 "tested"
- Network licensed and trained Panel Builder

Everything from one source - Eaton enclosure system and Eaton devices as a LV switchgear assembly according to IEC / EN 61439 - deposited by several thousand tests in laboratories only (documented in approximately 5000 design verifications)

Standards / solutions above standard...

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic-tested assembly
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breakers
 - Active electronic arc fault protection system

Withdrawable unit instead of fixed installation

Power Circuit Breaker section

Power Circuit Breaker field 630A ...

- Withdrawable open circuit breaker
- Withdrawable compact circuit breaker
- Easy replacement

Withdrawable unit instead of fixed installation

MCC fully withdrawable unit

Fully withdrawable unit...

- Motorstarter & Energy outflow
- Easy to replace
- No tools necessary

Withdrawable unit instead of fixed installation

MCC fully withdrawable unit

Characterisics

- Motorstarter conventionell MPCB, eMPCB, MCCB
- Soft starters and frequency converters
- Energy feeder MCCB
- iMCC = communication-capable slot by protection devices with electronic shutter (SmartWire)

Withdrawable unit instead of fixed installation

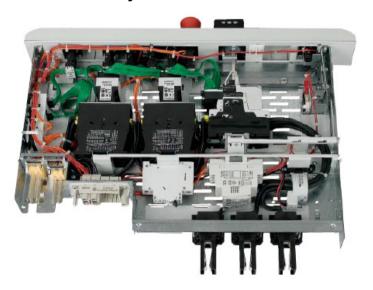
MCC fully withdrawable unit

Lockable

- Prevents access by unauthorized persons
- Safety for operating personnel

Positions

- 3 Positions
- connected, test, disconnected


IP2X or Shutter

- Finger safety cover or
- Completely covered by automatic shutter

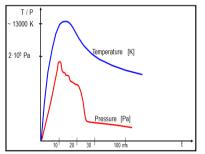
Withdrawable unit instead of fixed installation

iMCC fully withdrawable unit

Characterisics

- Motorstarter eMPCB, MCCB
- Internal communication via SmartWire (green cable)
- Status messages of the electronic protection devices

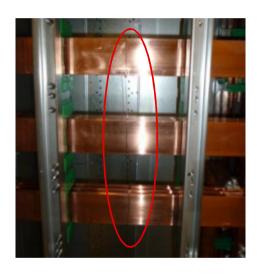
Standards / solutions above standard...

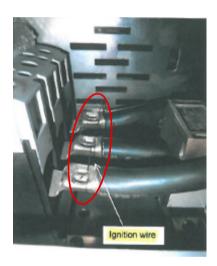

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic-tested assembly
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breakers
 - Active electronic arc fault protection system

Basics of an arc fault within a switchboard

- An arc fault can be caused by the following circumstances...
 - Human error
 - Technical defect
 - Change of environmental conditions
 - Animals in the assembly ...
- An arc is formed 3 pole, runs away with v = 100 m/s from the line side (transformer supply e.g.)
- Strong pressure and temperature development
- Doors flying on and flying away, massive parts
- Steam and gas expansion
- Fire hazard
- •

Basics about passice arc fault protection acc. TR 61641

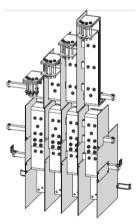

- Is not part of the design verification IEC / EN 61439
- User manufacturer agreement
- Results valid only for closed panels
- Dedicated more for personal protection and limited for system protection
- Wording: "arc tested" und "arc ingnition protected"
- Arc fault classes A*, B*, C* (personal resp. personal and system protection), class
 I (arc ignition protected = "insulation")
- NEW: Access limited, access unlimited ... Test with 150g/m² cretone or 40 g/m² in 300mm distance



^{*)} consist of arc tested and when available arc ingnition zones

Test lab procedures

 Pre-defined ignition wires are assembled into the panel to get the arc started at the defined locations



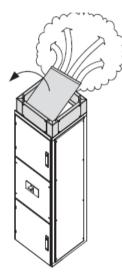
 Pre-defined cotton indicators, simulate operators and are not allowed to ignite or burn, during or after the test.

Passive arc fault protection according to TR 61641

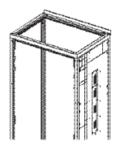
Measures for the passive arc fault protection

Separation/Covers

- Separation between live parts in particular in the terminal box
- Prevent a discharge


Strengthened lock/mounting and hinges

- Strengthened lock on the doors / hinges
- Prevents opening of the doors during an arc


Passive arc fault protection according to TR 61641

Measures for the mechanical arc fault protection

Depressuring/ flaps

- predetermined breaking cover for depressuring the internal in a definded range
- De-dangering of the front (area where the personnel stays in common)

Arc barriers within MBB area

- Continue of the arc prevented by arc barriers section-section in MBB room
- Limiting the arc on defined area

Passive arc fault protection according to TR 61641

F.e.: Eaton xEnergy with passive arc fault protection

Characteristics:

- Personnel and system protection
- Criteria 1 to 6
- $U_e = 400V 50Hz$
- $I_{parc} = 65kA$
- $t_{arc} = 300 ms$

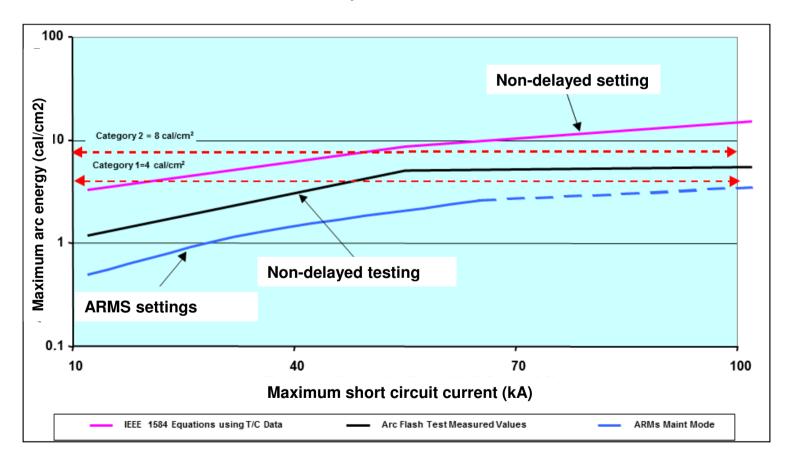
Safety from a single source - Eaton xEnergy tested according to TR 61641 Increased Safety for persons and systems

Standards / solutions above standard...

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic-tested SGK
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breakers
 - Active electronic arc fault protection system

"Maintenance settings" for circuit breaker with electronic release

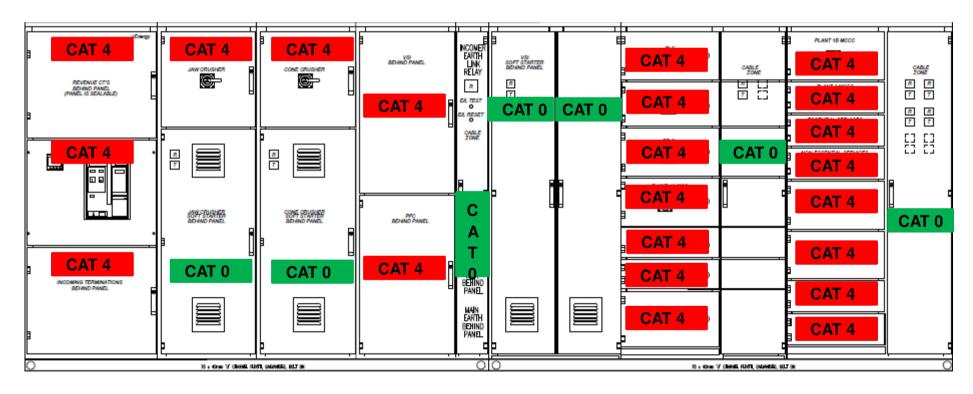
Air circuit breaker with ARMS System ...


Characteristics ARMS

- Reduce the arc energy to approximately ¼ of the energy at a "non-delayed" ACB
- Protection of persons during maintenance
- Remote activation e.g. door contact of the switchgear

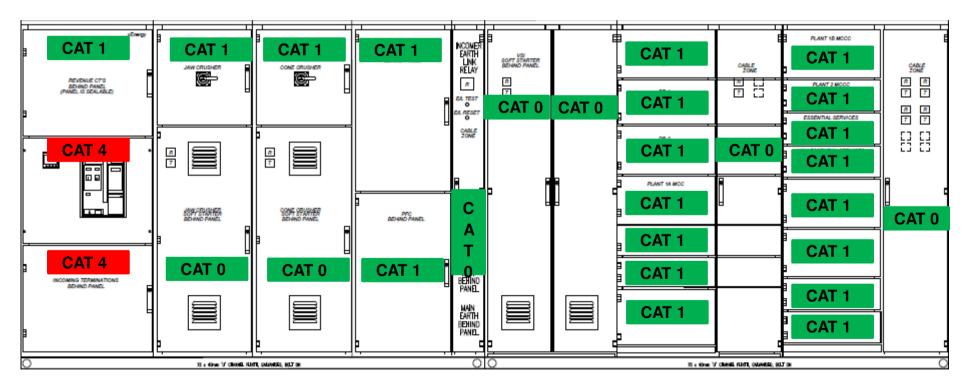
"Maintenance settings" for circuit breaker with electronic release

Air circuit breaker with ARMS System ...



Layout of a Main Switchgear Assembly

Switchboard <u>WITHOUT</u> ARMS Cabinet Category levels



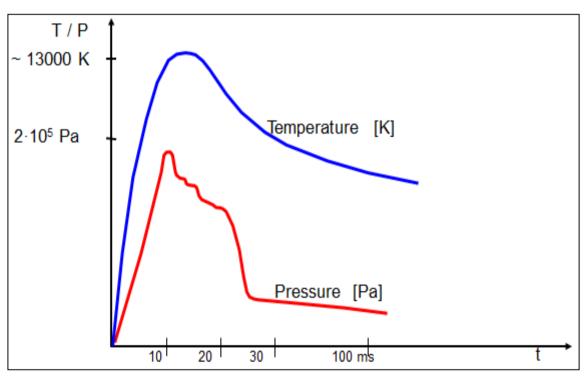
Layout of a Main Switchgear Assembly

Switchboard WITH ARMS

Cabinet Category levels

Standards / solutions above standard...

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic-tested assembly
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breakers
 - Active electronic arc fault protection system


Basics of an arc fault within a switchboard

Effects of arc faults...

^{*)} Klöckner-Moeller / Eaton / Universität Ilmenau

Active electronic arc fault protection system with quenching device

Quenching device – Fast tripping time by gas pressure generator drive



Active electronic arc fault protection system with quenching device

Consequences with or without usage of ARCON

Active electronic arc fault protection system with quenching device

Not protected vs. protected

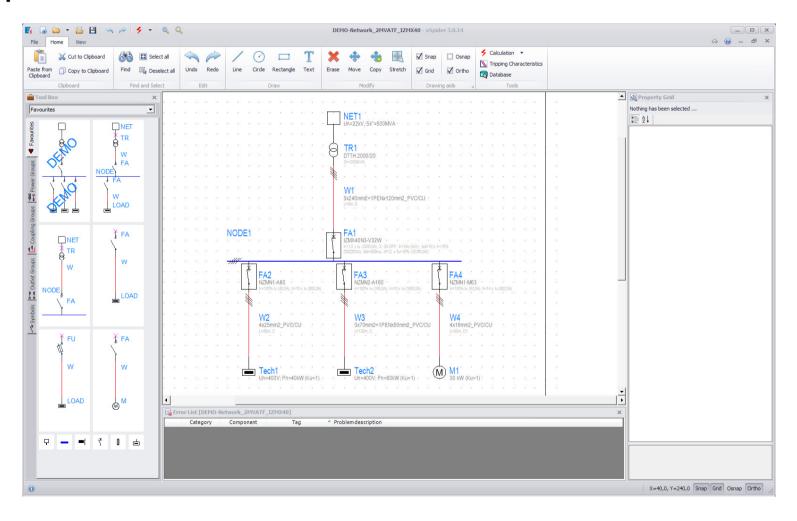
Not protected

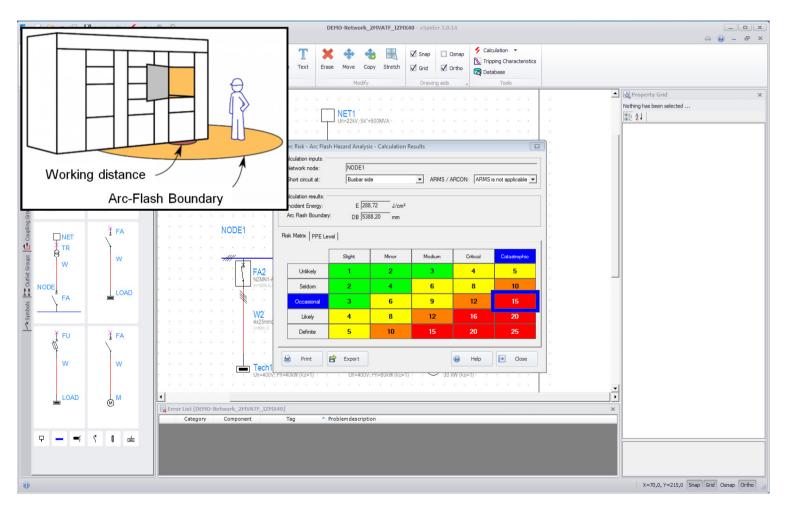
protected

Do you see the difference...?

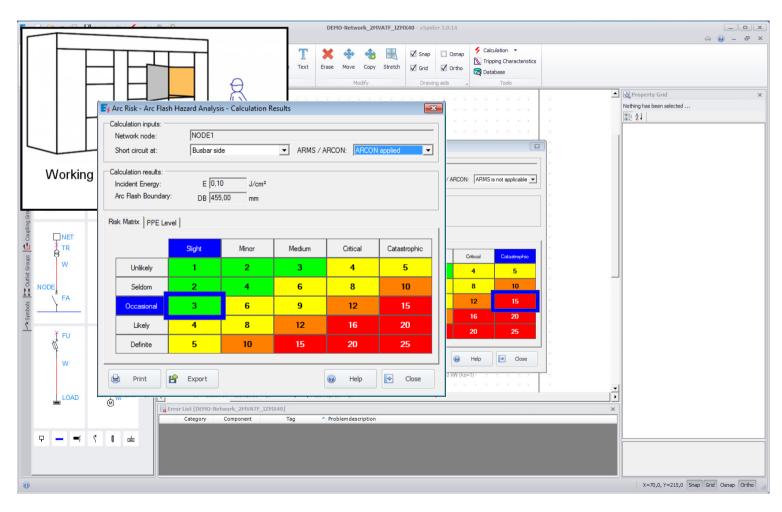
Active electronic arc fault protection system with quenching device – advantages for the user

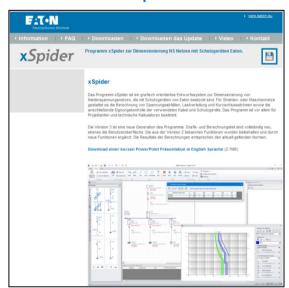
Examples for PPE

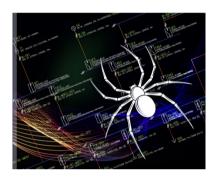



Standards / Solutions

- "Damage preventing" measures"
 - Assemblies as xEnergy/Modan from Eaton tested according to IEC 61439.
 - Internal separation in formación Eaton wichgears
 - Fully withdrawable unit is tead of fixed installation in the nergy/Modan available
 - Passive are fault protection acces to TR 6 fait in xEnergy/Modan available
 - Continuous temperature monitoring diagnose in Energy/Modan for predictive maintenance
- Measures to Limit the damage
 - Passive arc fault protection &c. to TR 61641 in xEnergy/Modan available
 - "Maintenance settings" for switches with electronic release with IZMX and ARMS (arc fault reduction maintenance system)
 - Active electronic arc protection system ARCON with quenching device







- Network calculation etc.
- Risk assessment / "Arc flash hazzard study"
- Acc. IEEE 1584TM-2002 (EN 50110-1,-2)
- Integration of ARMS, ARCON etc.
- xSpider is free of charge
- Download and register: www.xspider.eaton.eu

Standards / solutions above standard...

- "Damage prevention" measures
 - IEC / EN 61439
 - Internal separation
 - Fully withdrawable technology instead of fixed installation
 - Passive arc fault protection according to TR 61641
 - Continuous temperature monitoring
 - Seismic-tested assembly
- Measures to "Limit the damage"
 - Passive arc fault protection according to TR 61641
 - "Maintenance settings" for circuit breakers
 - Active electronic arc fault protection system

Basics concerning temperature monitoring

- Aging of equipment or loose connections can cause problems
- Conjested ventilation
- Thermal sceening shows hot spots but it also has limits
 - Thermal recognition gives only an "idea of the moment"
 - Scanning must be done under normal load
 - Inaccessible places can be not covered

•

Basics concerning temperature monitoring

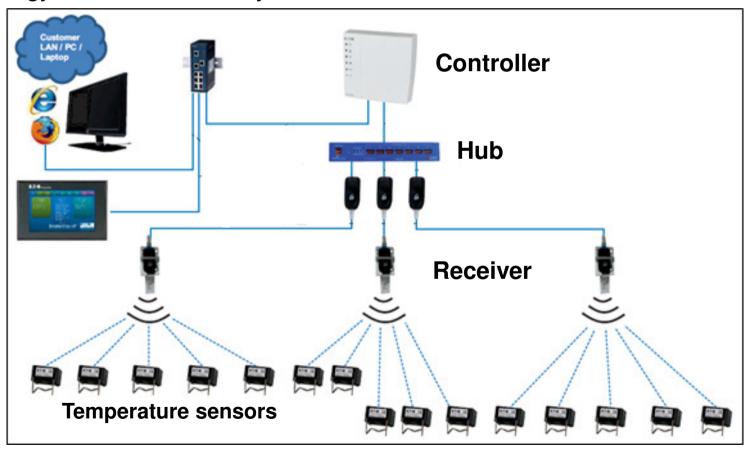
Examples thermal screening

Procedure:

- Removing of insulation or install from so-called IR Windows
- Thermal camera to detect hot spots
- Below: 20 y.o. panel findings ... not visible by thermal screening due to position of connection

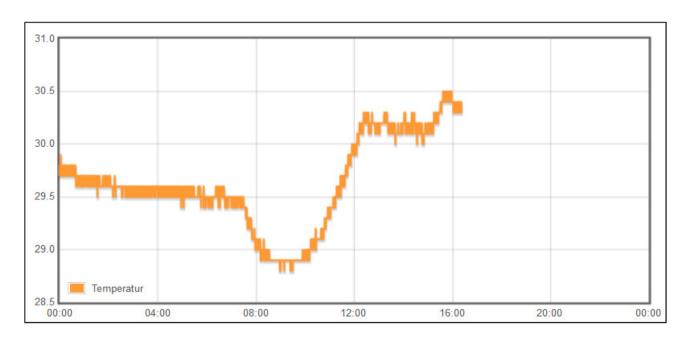
Permanent temperature monitoring

Positioning of sensors at critical points / measuring variations



Breaker, transport split, Link breaker

Permanent temperature monitoring for predictive maintenance


Topology within the assembly

Continuous temperature monitoring for predictive maintenance

Trend (24h)

Storage every 30s/sensor 24h

Continuous temperature monitoring for predictive maintenance

Trend (28d)

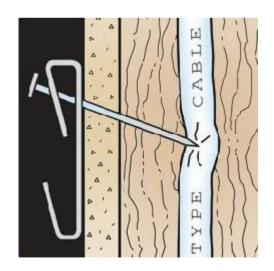
Storage of 10min values / sensor

Standards / Solutions

- "Damage preventing" measures"
 - Assemblies as xEnergy/Modan from Eaton tested according to IEC 61439
 - Internal separation in form 3 or 4 in Eaton switchgears
 - Fully withdrawable unit instead of fixed installation in xEnergy available
 - Passive arc fault protection acc.g to TR 61641 in xEnergy available
 - Continuous temperature monitoring diagnose in xEnergy for predictive maintenance
 - seismic-tested xEnergy
- Measures to "Limit the damage"
 - Passive arc fault protection acc. to TR 61641 in xEnergy available
 - "Maintenance settings" for switches with electronic release with IZMX and ARMS (arc fault reduction maintenance system)
 - Active electronic arc protection system ARCON with quenching device

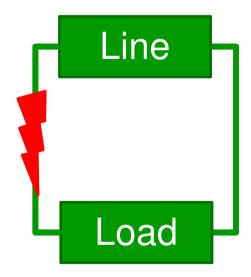
Standards / solutions above standard...

New device to protect against electrical ignited fires ...

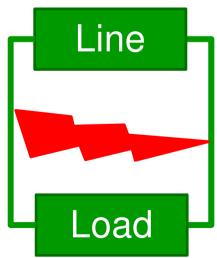


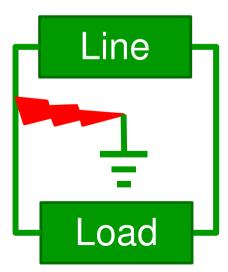
Triggered by...

- Damaged cables (power cords)
 - E.g. pinched under doors or furniture
- Damaged plugs
 - E.g. crippled and overstretched cables
- Deffective (lose) terminals
 - Lose screws
- Aged/damaged Insulation
 - Pierced by nails or screws



Serial arcs


- Serial arcs (over 90%)
 - Typically below nominal current of the MCB > No trip



Parallel Arcs

- Parallel Arcs (below 10%)
 - Between N und L: Typically below nominal current of the MCB > No trip
 - Between L und PE: Typically above 30mA > RCD will trip

The Eaton solution

- + "All-in-one" device
 - + Short-circuit and overload
 - + RCD
 - + AFDD

- + 10 40A max.
- + Simple, easy and robust installation
- + Cost effective

AFDD: How does it work

- Electronic detection of the HF patern
 - Safe and quick detection
 - Low nuissance tripping (quality differentiator)3
- Only one device per outlet circuit
 - Too many different loads may mask the signal
- "Cross talk" test
 - Only the right AFDD shall trip (not the neighbouring device)

AFDD

FAQs

- Will it work with:
 - Old drilling machines
 - Welding devices
 - Electronic loads
 - Dimmed loads
 - Power line communication ✓

Any questions?

