

el: 372 9247

Statutory Framework

RA 9513 – Renewable Energy Law of 2008

mandates that all electricity generators and consumers are required to source at least 10% of electricity requirement from renewable energy sources

Renewable Energy Technologies

Geothermal □ Wind Biomass **U**Hydro

Ocean Power

Tidal

- Potential energy with respect to the change of tide levels
- Result of the moon's gravity

Ocean Current

- Kinetic energy conversion,
 movement or flow of water
- Takes advantage of "venturi effect" of certain sites

Tidal Power

The differences in tidal elevations on either side of a barrage causes current to flow across a turbine

Similar to a typical large hydro power plant

Tide Going Out

Ocean-current

egration

tilization

- Certain geologic formations channel water, creating faster current velocities
- At such locations, higher water velocity can turn a turbine, which can then be used to generate electricity
- Very similar in operation to wind turbines, can be horizontal axis or vertical axis

cia Power Systems

e Energy Resource Compar

Ocean-current

Geothermal

VGar<mark>cia Power</mark> Systems Co

The Energy Resource Company

gli Place 170 T Morato Ave. etro Manila, Tel: 372 9247 gardiapowersystems.com

Ocean – Technical Considerations

- Very new technology, with only pilot plants in service
- Difficulty of constructing in open water
- Difficulty of grid interconnection through open water
- Very site specific, needs to have large tide elevations, or high ocean current velocities, which are geology dependent

Geothermal Power

- Water stored in the earth's crust get heated by shallow magma, generating steam
- Steam is harvested via holes drilled deep into the crust, known as "geothermal wells"
- The steam is then used to turn turbines to generate electricity
- In "Enhanced" Geothermal, water is pumped into hot rock

Geothermal – Technical Considerations

- Different kinds of steam are drawn, requiring different types of processing.
 - Wet steam is saturated and has high water content. This has to be removed via a pressure vessel known as a cyclone separator.
 - Dry steam is 99% steam and can be delivered to a turbine with minimal processing
 - Geothermal steam is acidic due to high sulfur content, and has to be "sweetened" prior to use
 - Can be base load because of high availability and power density
 - Site specific, reservoir of hot steam, and shallow magma has to be identified
 - Costly development, has to drill 2-3 km long wells into the crust

Wind

The Energy Resource Company

gli Place 170 T Morato Ave. etro Manila, Tel: 372 9247 garciapowersystems.com

uite 7H, 20 Lansb Quezon City, Email: info@a

Wind Power

Claims to be

- Easier to service and maintain, turbine and generator are accessible
- Can be installed closer to each other, compared to HAWTs
- Quiter than HAWTs
- Very few successful VAWT operation

- Traditional wind turbine
- Old and tested technology

Biomass

The Energy Resource Company

170 T Morato Av Tel: 372 9247 systems.com

Manila,

rciapowers

20 Lansl

Quezon City,

Email: info@a

Biomass

- Solid Fuel Technology
 - Pyrolysis or Gasification, with ICE Generation Units
 - Conventional Rankine Cycle (Boiler-Steam Turbine)
 - Indirect Fire Bryton Cycle Pyrolysis with Combustion Turbines
 - Direct or Indirect Fire Organic Rankine Cycle (ORC) -
- Gas Fuel Technologies
 - Bio-methane using Anaerobic Digesters with ICE Generation sets
 - Land Fill Methane Gas Capture with ICE Generation sets
- Liquid Fuel technologies
 - Biomass to Diesel Fuel Reactors with ICE Generation sets
 - Biomass to Alcohol Fuel
 - Corn / Sugar / Algae and similar sugar rich biomass
 - Coconut Oil to Bio-Diesel (Coco Methyl Ester CME)

The Energy Resource Company

arciapowers

Anaerobic Digester

Basic Hydro Electric Power Equation

Power (kW) = $9.81 \times WT_{eff} \times G_{eff} \times H \times Q$

Where:

WT_{teff} - Water Turbine Efficiency

G_{eff} – Generator Efficiency

H – Hydraulic Head, in meters

Q – Water Flow, m³ per sec

Basic Hydro Electric Power Plant Types

Run of River Type

Pico <1kw, run or river or stream
Micro >1kW ≤ 100 kW, run of river
Mini > 100 ≤ 50 MW, run of river

Impounding Type

□ High Dam >50 MW, 50 meter dam
□ Low Dam >5 MW, ≥15 meter, ≤ 50 meter

Water Turbine Selection and Types

nergy Systems Integration Generation - Distribution - Otilization

The Energy Resource Company

20 Lansi

Quezon City Email: info@ 70 1

stems.com

⁻ Morato A el: 372 9247

River Hydrology			Generation Analysis - Reference Base @ 30% Exeedance							
% Exeedance	Q, cms	Net Q, cms	Design Q cms	kWe	Days Operational	Days Generation	Generation kWH	Qty	kWe	% Loading
1%	41.823	33.458	10.324	3,000	4	4	262,800	3	3,000	100%
5%	31.308	25.046	10.324	3,000	18	15	1,051,200	3	3,000	100%
10%	23.149	18.519	10.324	3,000	37	18	1,314,000	3	3,000	100%
15%	18.173	14.538	10.324	3,000	55	18	1,314,000	3	3,000	100%
20%	15.264	12.211	10.324	3,000	73	18	1,314,000	3	3,000	100%
25%	12.905	10.324	10.324	3,000	91	18	1,314,000	3	3,000	100%
30%	11.483	9.186	9.186	2,609	110	18	1,142,702	3	3,000	87%
35%	10.136	8.109	8.109	2,303	128	18	1,008,664	3	3,000	77%
40%	9.096	7.277	7.277	2,067	146	18	905,182	3	3,000	69%
45%	8.336	6.669	6.669	1,894	164	18	829,573	3	3,000	63%
50%	7.286	5.829	5.829	1,655	183	18	725,098	3	3,000	55%
55%	6.554	5.244	5.244	1,489	201	18	652,257	3	3,000	50%
60%	5.442	4.353	4.353	1,236	219	18	541,506	2	2,000	62%
65%	4.840	3.872	3.872	1,100	237	18	481,598	2	2,000	55%
70%	4.241	3.393	3.393	964	256	18	422,070	2	2,000	48%
75%	3.816	3.052	3.052	867	274	18	379,701	2	2,000	43%
80%	3.466	2.773	2.773	787	292	18	344,897	2	2,000	39%
85%	3.238	2.591	2.591	736	310	18	322,244	1	1,000	74%
90%	3.050	2.440	2.440	693	329	18	303,563	1	1,000	69%
95%	2.911	2.329	2.329	661	347	18	289,659	1	1,000	66%
100%	2.808	2.246	2.246	638	365	18	279,431	1	1,000	64%
Gross Annual Generation Capability		kWH 15,198,143								
Equivalent Annual Capacity			/ kW	kW 1,735						
Annual Theoretical Generation			kWH	26,280,000						
Plant Capcity Factor							58%			
Plant Configuration				3	1,000)	3,000			
Net Annual Generation Capability			kWH		2.25%)	14,856,185			

Energy Systems Integration Generation - Distribution - Utilization

The Energy Resource Company

Garcia Power Systems

uite 7H, 20 Lansb gn Placen 170 T Morato A Quezon City, metro Manila, Tel: 372 9247 Email: info@a ugarciapowersystems.com

Solar Photovoltaic

VGar<mark>cia Power</mark> Systems Co

The Energy Resource Company

170 T Morato / el: 372 9247

/stems.com

Solar Resource

Components of Sunlight

Hay Davies Klucher Randl Model

Solar Resource

Solar Energy has the largest energy reserve, can supply world's energy requirements

TO THEIR TOTAL RESERVES WHILE RENEWABLE ENERGIES TO THEIR YEARLY POTENTIAL.

Global Solar Resource

Geography and location has a large impact on the availability of sunlight

Philippines Solar Resource

cia Power Systems

The Energy Resource Company

Systems I

Generation - Distributi

Integration on -Utilization NREL Solar Resource Map

- 4.5 to 5.5 kWh/m²day
- 1600 to 2000 kWh/ m²-year
- Germany: 800 1000 KWh/m²-year

Germany installed solar - 22GW as of 2012 Philippines current total demand is 15GW

20 Lansi

azon City

el: 372 9247
Solar PV System

- On Grid System
 - Operating in parallel with a power grid or reference grid
 - Does not require battery supply or back-up
 - When reference power grid is down, it can not operate as an island power source
 - Reference grid can either a utility system or an independent generator system
- Off Grid System
 - Operating without a reference grid
 - Requires battery supply or back-up
 - It operates as an island power source

Solar PV System

- Hybrid System
 - Operating with a reference grid
 - Reference grid can be any other power supply, but ideally a diesel generating set that can be de-loaded quick enough as the solar resource varies.
 - Ideally can be combined with wind and/or hydro technology to reduce further dependence on diesel technology as reference grid
 - In combination with a reference grid, can work as an island power grid

Capacity Determination

- Different Parameters between On-Grid and Off-Grid Systems
- On Grid systems are demand (load profile) dictated
 - How much solar power penetration is allowed?
- Off Grid systems are demand and autonomy time dictated
- Hybrid Systems are dictated by demand and reference grid stability

PV Module String

Limited by the capacity, type and model of the inverter

String voltage vs inverter input voltage limit

Number of string inputs per inverter

Inverter Selection

- String or Central Type
- With or without transformers?
- DC Input voltage limitation
- Single phase or Three phase
- AC Output voltage
- Performance Factor
- Efficiency

Grid Interface

- Central or Distributed Type
- AC Integration Voltage
- Grid Interface Voltage

rcia Power Systems

Energy Resource Compan

ergy Systems Integration Generation - Distribution - Utilization

Orientation

 Will impact yield and economics of PV system
Ideally south facing

el: 372 9247

zon Citv

Shadowing

Results in heating of part of the solar array, depending on the degree of shadowing

Resource data is site specific

- Data available is typically for the global horizontal
- Varies with latitude, and local geographic and climatic conditions
- Solar resource varies with orientation of the receiving surface
 - **Optimal slope** needs to be determined
- Ability to understand site specific resource, and resource with respect to orientation is critical in success

Other System Considerations

Module Temperature Deration Line Losses Inverter System grounding Physical earth **Input** parameters Surge Protection

- Tracking
 - Moving parts
- Maintenance
 - Module dusting
 - Inverter cooling

Design Considerations

Good engineering design Impact of resource Impact of temperature Module selection Inverter selection Grid interconnection Overall performance Performance Ratio - 75% to 80%

Solar Photovoltaic Technology

Solar PV Technology

The Energy Resource Company

- Solar Photovoltaic Modules
- Inverters
- Mounting

nergy Systems Integration Generation - Distribution - Otilization

Grid Interconnection

el: 372 9247

stems.com

Quezon City. Email: info@

Solar Photovoltaic Technologies

Crystalline Silicon

- Made out of cutting crystal silicon into wafers
- Delivered as modules (with or without frame)
- High efficiency
 - Monocrystalline up to 25%
 - Polycrystalline up to 18%
- Reliable technology
- Rigid

Thin Film Technologies

- Printing technology (chemical deposition)
- Delivered as modules
- Lower efficiency
 - Amorphous Silicon 7%
 - □ CdTe 8%
 - □ CIS 10%
- Newer Technology with limited field experience

Flexible

Solar Photovoltaic Technologies

Photovoltaic Technology	Description
Monocrystalline Silicon	Uses crystalline silicon cells manufactured using Czochralski process. Expensive but efficient.
Polycrystalline Silicon	Uses crystalline silicon cells manufactured using the ingot process. Moderately expensive, but less efficient.
Amorphous Silicon Thin Film	Uses sputtering techniques for silicon deposition. Cheap, but highly inefficient.
CIGS Thin Film	Uses chalcopyrite to create PV junction. Cheap, but inefficient.
CdTe Thin Film	Uses II-VI semiconductors. Cheap but inefficient.

Thin Film PV

- Deposition of extremely thin layers of photosensitive materials on a low cost backing (glass, stainless steel or plastic)
- Advantages
 - Low consumption of raw materials
 - Suitable for building integration
 - High automation of production
- Disadvantages
 - Lower efficiencies
 - Less experience on module lifetime performance
 - Production is still small

Thin Film

Energy Systems Integration Generation - Distribution - Otilization

The Energy Resource Company

Email: info@a

Solar Carport

Approximately 40 to 120 Watts per square meter for Thin Film

70 1

Quezon City.

Morato el: 372 9247

nergy Systems Integration Generation - Distribution - Otilization

r<mark>cia Power Systems</mark> The Energy Resource Company

Solar Building Skins

Inverter Technologies

Inverter Class	Typical Capacity	Inverter Efficiency	
Central	> 25 KW	97%	SINAL ROL
String	Between 1 KW and 25 KW	95%	
Module	< 1 KW	93%	

Inverter Installation – 40 kW Rooftop

Transformer vs. Transformerless

Transformer-based Topographies

- Less efficient
- Heavier
- Bulkier
- Provides galvanic isolation

Transformerless Topographies

- More efficient
- Lighter
- Smaller
- Does not provide galvanic isolation

Grid-interconnection important!

Mounting Technologies

- Orientation of the surface affects the availability of resource (sunflower concept)
- Classes
 - Fixed Tilt
 - Fixed Tilt with Seasonal Adjustment
 - Single Axis Tracking (North-South Axis)
 - Single Axis Tracking (East-West Axis)
 - Two Axis Tracking

Mounting Systems

Mounting System	Description	
Fixed Tilt	Fixed tilt system with module orientation at zero	
	azimuth and slope equals latitude	
Fixed Tilt with Seasonal	Fixed tilt system at zero azimuth and quarterly	
Adjustment Mounting	ounting adjustments to the slope for seasonal optimization	
North-South Single Axis	Single axis tracking system mount that tracks the	
Track	seasonal variation of the sun's position	
East-West Single Axis	Single axis tracking system mount that tracks the daily	
Track	variation of the sun's position	
Two Axis Track	Two-axis tracking system that that fully optimizes	
	resource availability	

Mounting Technologies

Single Axis Trackers

Two-Axis Trackers

Resource of Tracked versus Fixed

Solar PV Project Development and Economics

Site evaluation - Solar Pathfinder

Site evaluation — Pyranometer and Datalogger

Project Conceptualization Pre-feasibility Study Financing Options

> Resource Analysis Site Assessment Shadowing Analysis

Detailed Engineering

Feasibility Study Roof Structural Verification Detailed Engineering

Shadow model and analysis

Installation work

Execution Procurement and Importation Construction Project Management

Operations and Maintenance Warranty Reporting

Operation and Maintenance Contracts

Feasibility Index Maps

Detailed Engineering

Commissioning

Capacity Definition

- Review of Load Profile
- Without netmetering with utility, solar PV electricity has to be 100% consumed
- With net-metering, excess solar PV electricity can be sold to distribution utility

Commercial Load Profile

Power Generation

Power Generation		
100	KWp	
4.75	Sun-hours Per Day	
365	Days Per Year	
80%	Performance Ratio	
138700	KWh per year	

Economics

	USD	PHP
Total Capital and Operating Cost	400 Thousand	17 Million
Total Energy Generation (KWh)	3.2 Million	3.2 Million
LCOE (Currency/KWh)	0.129	5.31

- Consider degradation rate (0.5%)
- Most operational issues come from inverters.
- Maintenance cost assumption replaces inverter every 10 years

Economics

	100 kWp	500 kWp	
Cost Recovery	8 to 10	8 to 10	Years
25-YEAR SAVINGS	30 Million	160 Million	РНР
INVESTMENT COST	17 Million	65 Million	РНР
LEVELIZED COST OF SOLAR	4-6	4-6	PHP/ KWH

Electricity Cost Savings

Electricity Price (PHP/KWh)

Electricity Cost Savings

Electricity Price (PHP/KWh)

Environmentally-friendly Energy

Avoidance of greenhouse gas emissions

Contribute to the global climate change mitigation efforts

Solar Car Parks and Waiting Sheds

Solar Rooftops

Approximately 120 to 180 Watts per square meter for Crystalline

70 1

el: 372 9247

Morato

20 Lans

Quezon City.

Energy Systems Integration Generation - Distribution - Otilization

Garcia Power Systems Co

Solar Building Skins

40 kW Rooftop Installation - Dagupan

Solar Building Skins

Solar Building Skins (Retrofit)

AVGarcia Power Systems Corp.

The Energy Resource Company www.avgarciapowersystems.com

Renewable Energy Power Generation Systems

cia Power Systems

e Energy Resource Compar

Systems Integration

Generation - Distribut

n - Utilization

Adel Garcia, Jr. – PEE

Mobile: +63 917 522 2225 Email - adelgarcia@gmail.com

Quezon City.

Adelino V. Garcia, Jr. Professional Electrical Engineer – 1584

Chairman and President AVGarcia Power Systems, Corp. Quezon City, Philippines

Director Caraga Renewable Energy Corp

35 Years of Energy Systems Engineering and Integration Project Management, Execution and Implementation Business Development and Management

Expertise and Qualifications:

- Energy Engineering and Systems Integration of various technologies such as: Coal Thermal; Combustion Gas Turbine; Heavy/Light Fuel Oil; Biomass and Biogas; Hydroelectric, Solar PV, Wind and Fuel Cell Energy Generation Facilities
- Business and Project Development of Conventional and Renewable Energy Generation Technologies

Expertise and Qualifications:

- Project Development, Design and Engineering, Project Execution and Management, Operation and Maintenance of various Power Generation Facilities (PGF):
 - > 3,000MW of Coal Thermal PGF
 - > 1,500MW of HFO/LFO Diesel PGF
 - > 1200MW Combustion Turbine PGF
 - > 100MW of Biomass/Biogas PGF
 - >100MW of Run-of-River Hydroelectric PGF
 - >100MW of Solar PV PGF

stems Integration

>50MW of Fuel Cell /Hydrogen Technology

Garcia Power Systems

Expertise and Qualifications:

- Engineering and Execution of Grid Connection Facilities for PGFs:
 - > 2000MW of 500kV Switchyards
 - > 1,500MW of 230kV Switchyards
 - > 1,000MW of 115/138kV Switchyards
 - 1,000MW of 72kV Switchyards & Substations
 - 100MW of 36kV Switchyards & Substations
 - 100MW of 15kV Switchyards & Substations

AVGarcia Power Systems Corp.

The Energy Resource Company

www.avgarciapowersystems.com

Energy Solutions Integrator

Provider

and

Adel Garcia, Jr. – PEE

Mobile: +63 917 522 2225 Email - adelgarcia@gmail.com Email - adel.garcia@avgarciapowersystems.com

Energy Systems Integration AVGarcia Power Systems

The Energy Resource Company